Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis[2-(ethoxycarbonylamino)ethanaminium] hexabromidostannate

R. Alan Howie, ${ }^{\text {a }}$ Geraldo M. de Lima, ${ }^{\text {b }}$ Edward R. T. Tiekink, ${ }^{\text {c* }}$ James L. Wardell ${ }^{\mathbf{b}} \ddagger$ and Solange M. S. V. Wardell ${ }^{\text {d }}$
${ }^{\text {a Department of Chemistry, University of Aberdeen, Old Aberdeen AB15 5NY, }}$ Scotland, ${ }^{\text {b }}$ Departamento de Quimica, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil, ${ }^{\text {c }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
Correspondence e-mail: edward.tiekink@gmail.com

Received 5 November 2009; accepted 6 November 2009
Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.034 ; \omega R$ factor $=0.070 ;$ data-to-parameter ratio $=23.1$.

In the title salt, $\left(\mathrm{C}_{5} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left[\mathrm{SnBr}_{6}\right]$, the Sn atom (site symmetry $\overline{1}$) exists in a slightly distorted octahedral geometry. The cation is non-planar as the terminal $\mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}$residue lies below the plane defined by the remaining non-H atoms. In the crystal, cations associate via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the ammonium and carbonyl residues, forming a 14-membered $\left\{\cdots \mathrm{HNC}_{2} \mathrm{NCO}\right\}_{2}$ synthon. The cations and anions are arranged in alternating layers arranged along the a-axis direction, the major association between them being $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ contacts.

Related literature

For background to the synthesis of the title salt, see: Duschinsky (1950); Kita et al. (1980); Smith et al. (1998); Tavridou et al. (1995); Wilson \& Nowick (1998).

Experimental

Crystal data

$\left(\mathrm{C}_{5} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left[\mathrm{SnBr}_{6}\right]$
$V=2433.34(11) \AA^{3}$
$M_{r}=864.48$
Monoclinic, $C 2 / \mathrm{c}$
$Z=4$
Mo $K \alpha$ radiation
$a=21.8907$ (5) A
$\mu=10.92 \mathrm{~mm}^{-1}$
$b=7.4428$ (2) \AA
$T=120 \mathrm{~K}$
$c=15.5318$ (4) \AA
$0.38 \times 0.32 \times 0.22 \mathrm{~mm}$
$\beta=105.934$ (2) ${ }^{\circ}$

[^0]
Data collection

Bruker-Nonius 95 mm CCD camera on κ-goniostat diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.355, T_{\text {max }}=0.746$
15137 measured reflections
2777 independent reflections 2450 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.051$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
1 restraint
$w R\left(F^{2}\right)=0.070$
H -atom parameters constrained
$S=1.12$
2777 reflections
120 parameters
$\Delta \rho_{\text {max }}=0.87 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.35 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Sn}-\mathrm{Br} 2$	$2.5820(4)$	$\mathrm{Sn}-\mathrm{Br} 1$	$2.6075(4)$
$\mathrm{Sn}-\mathrm{Br} 3$	$2.6053(4)$		

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{n} \cdots \mathrm{Br}^{\mathrm{i}}$	0.88	2.83	$3.501(3)$	134
$\mathrm{~N} 2-\mathrm{H} 2 \mathrm{n} \cdots \mathrm{Br}^{\mathrm{ii}}$	0.91	2.64	$3.495(3)$	157
$\mathrm{~N} 2-\mathrm{H} 3 \mathrm{n} \cdots \mathrm{Br}^{\text {iii }}$	0.91	2.84	$3.425(3)$	123
$\mathrm{~N} 2-\mathrm{H} 4 \mathrm{n} \cdots \mathrm{O}^{\text {iv }}$	0.91	1.88	$2.717(5)$	152

Symmetry codes: (i) $-x+\frac{1}{2},-y+\frac{1}{2},-z+1$; (ii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{3}{2}$; (iii) $x,-y, z+\frac{1}{2}$; (iv) $-x, y,-z+\frac{3}{2}$.

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski \& Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from FAPEMIG (Brazil).

[^1]
supplementary materials

Bis[2-(ethoxycarbonylamino)ethanaminium] hexabromidostannate

R. A. Howie, G. M. de Lima, E. R. T. Tiekink, J. L. Wardell and S. M. S. V. Wardell

Comment

Tin halides react with 2-imidazolidone, 1 (Scheme 2), in non-protic solvents such as dichloromethane, to form solid complexes $\left[R_{2} \mathrm{SnCl}_{2}(1-\mathrm{O})_{2}\right](R=\mathrm{Me}, \mathrm{Bu}$ or Ph$),\left[\mathrm{MeSnCl}_{3}(1-\mathrm{O})_{2}\right]$ and $\left[\mathrm{Sn} X_{4}(1-\mathrm{O})_{2}\right](X=\mathrm{Cl}, \mathrm{Br}$ or I) (Tavridou et al., 1995); 1-O is the O-bound form of 1 . As reported herein, 2-imidazolidone reacts with SnBr_{4} in EtOH to form ethyl (2ammonioethyl)carbamate hexabromostannate, (I), Fig. 4. The combination of SnBr_{4} and EtOH proved to have sufficient Brønsted acidity to open the 2-imidazidone ring. Ring opening reactions of 2-imidazolidone derivatives have been variously reported using bases, e.g. N-(2-nitrobenzenesulfonyl)-2-imidazolidon by a secondary amine, R R'NH (Wilson \& Nowick, 1998) and acids, e.g., ring opening of 1-methyl-3-3-hydroxyphenyl-2-imidaxolidone by concentrated HCl to give $\mathrm{MeNHCH}_{2} \mathrm{CH}_{2} \mathrm{NHC}_{6} \mathrm{H}_{4} \mathrm{OH}-\mathrm{m}$ (Duschinsky, 1950). With reduced acidity, co-crystallization can occur instead as shown by the isolation of a 1:1 adduct of 2-imidazolidone and 5-nitrosalicylic acid (Smith et al., 1998). The free base of 2 has been reported from the reaction of $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ with $\mathrm{EtO}_{2} \mathrm{CO}(\mathrm{MeO}) \mathrm{CCH}_{2}$ (Kita et al., 1980).

The structure of (I) comprises ethyl (2-ammonioethyl)carbamate cations and SnBr_{6} dianions in the ratio $2: 1$; the Sn atom is located on a crystallographic centre of inversion so that the asymmetric unit is defined by one cation and half an anion, Fig. 1. The cation is not planar. While the RMS deviation of the $\mathrm{O} 1, \mathrm{O} 2, \mathrm{~N} 1$ and $\mathrm{C} 1-\mathrm{C} 4$ atoms is $0.019 \AA$, the C 5 atom lies 1.410 (5) \AA out of this plane; the $\mathrm{C} 3 / \mathrm{N} 1 / \mathrm{C} 4 / \mathrm{C} 5$ torsion angle of 96.4 (4) ${ }^{\circ}$. In the anion, the $\mathrm{Sn}-\mathrm{Br} 2$ bond distance of 2.5820 (4) \AA is significantly shorter than the $\mathrm{Sn}-\mathrm{Br} 1$ and $\mathrm{Sn}-\mathrm{Br} 3$ bond distances of 2.6075 (4) and 2.6053 (4) \AA, respectively, an observation rationalized in terms of the pattern of intermolecular interactions,see below. The carbonyl-O1 atom forms a hydrogen bond with an ammonium-H atom to form a dimeric aggregate, Table 1 and Fig. 2. The resulting 14-membered $\left\{\cdots \mathrm{HNC}_{2} \mathrm{NCO}\right\}_{2}$ synthon has twofold symmetry. The remaining acidic H atoms form contacts to the Br 1 and Br 3 atoms, Table 1, explaining the variation of the $\mathrm{Sn}-\mathrm{Br}$ bond distances, whereby the Br 2 atom not engaged in a significant intermolecular contact forms the shorter of the $\mathrm{Sn}-\mathrm{Br}$ bonds. Globally, the crystal packing comprises alternating layers of cations and anions stacking along the a direction.

Experimental

A solution of 2-imidazolidone $(0.86 \mathrm{~g})$ and $\mathrm{SnBr}_{4}(2.20 \mathrm{~g})$ in $\mathrm{EtOH}(10 \mathrm{ml})$ was heated to 323 K for 15 minutes, cooled and maintained at room temperature to slowly form crystals of (I); m. pt. $459-463 \mathrm{~K} . \operatorname{IR}(\mathrm{KBr})=1692 \mathrm{~cm}^{-1}$.

Refinement

All H atoms were located from a difference map but, were geometrically placed ($\mathrm{C}-\mathrm{H}=0.98-0.99 \AA$, and $\mathrm{N}-\mathrm{H}=0.88-0.91$ \AA) and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2-1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. The maximum and minimum residual electron density peaks of 0.85 and $1.26 \mathrm{e}^{-3}{ }^{-3}$, respectively, were located $1.81 \AA$ and $0.82 \AA$ from the S 1 and Sn atoms, respectively.

supplementary materials

Figures

Fig. 1. Molecular structure of (I) showing displacement ellipsoids at the 70% probability level. Unlabelled bromide ions are generated by the symmetry operation $1 / 2-x, 1 / 2-y, 1-z$.

Fig. 2. Supramolecular dimer in (I) mediated by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (orange dashed lines).

Fig. 3. Unit-cell contents for (I) viewed in projection down the c axis. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (orange dashed lines) and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ contacts (blue dashed lines) indicate the mode of asscoiated between the components of the crystal structure.

Fig. 4. The formation of the title compound.

Bis[2-(ethoxycarbonylamino)ethanaminium] hexabromidostannate

Crystal data

$\left(\mathrm{C}_{5} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left[\mathrm{SnBr}_{6}\right]$
$M_{r}=864.48$
Monoclinic, C2/c
Hall symbol: -C 2 yc
$a=21.8907$ (5) \AA
$b=7.4428$ (2) \AA
$c=15.5318(4) \AA$
$\beta=105.934(2)^{\circ}$
$V=2433.34(11) \AA^{3}$
$Z=4$
$F_{000}=1624$
$D_{\mathrm{x}}=2.360 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71069 \AA$
Cell parameters from 11507 reflections
$\theta=2.9-27.5^{\circ}$
$\mu=10.92 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Block, light-yellow
$0.38 \times 0.32 \times 0.22 \mathrm{~mm}$

Data collection

Bruker-Nonius 95 mm CCD camera on κ-goniostat diffractometer
Radiation source: Bruker-Nonius FR591 rotating anode
Monochromator: graphite
$R_{\mathrm{int}}=0.051$
Detector resolution: 9.091 pixels mm^{-1}
$\theta_{\text {max }}=27.5^{\circ}$
$T=120 \mathrm{~K}$
φ and ω scans
2777 independent reflections
2450 reflections with $I>2 \sigma(I)$
$\theta_{\text {min }}=3.1^{\circ}$
$h=-28 \rightarrow 28$

Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.355, T_{\max }=0.746$
15137 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.070$
$S=1.12$
2777 reflections
120 parameters
1 restraint
$k=-9 \rightarrow 9$
$l=-20 \rightarrow 20$
路

H1A	-0.0323	0.2857	0.3379	0.042^{*}
H1B	-0.0933	0.1584	0.3219	0.042^{*}
H1C	-0.0235	0.0751	0.3584	0.042^{*}
C2	$-0.05232(18)$	$0.2130(6)$	$0.4539(3)$	$0.0212(9)$
H2A	-0.0812	0.3143	0.4561	0.025^{*}
H2B	-0.0677	0.1047	0.4785	0.025^{*}
C3	$0.02071(18)$	$0.2985(5)$	$0.5912(3)$	$0.0163(8)$
C4	$0.10453(17)$	$0.3786(5)$	$0.7254(3)$	$0.0187(8)$
H4A	0.0693	0.4315	0.7455	0.022^{*}
H4B	0.1387	0.4695	0.7339	0.022^{*}
C5	$0.1296(2)$	$0.2146(6)$	$0.7810(3)$	$0.0227(9)$
H5A	0.0971	0.1185	0.7674	0.027^{*}
H5B	0.1679	0.1695	0.7657	0.027^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn	$0.01042(17)$	$0.01213(17)$	$0.0158(2)$	$0.00012(12)$	$0.00415(14)$	$-0.00043(13)$
Br1	$0.0233(2)$	$0.01857(19)$	$0.0286(2)$	$0.00387(15)$	$0.01518(17)$	$0.00774(16)$
Br 2	$0.01230(18)$	$0.0248(2)$	$0.0236(2)$	$0.00109(15)$	$-0.00008(16)$	$-0.00413(16)$
Br 3	$0.01406(18)$	$0.01542(18)$	$0.0230(2)$	$-0.00038(14)$	$0.00701(15)$	$-0.00511(15)$
O1	$0.0150(13)$	$0.0372(16)$	$0.0200(16)$	$-0.0028(12)$	$0.0075(11)$	$-0.0051(13)$
O2	$0.0141(13)$	$0.0355(17)$	$0.0170(15)$	$0.0003(11)$	$0.0034(12)$	$-0.0037(12)$
N1	$0.0116(14)$	$0.0328(19)$	$0.0161(18)$	$-0.0009(14)$	$0.0046(13)$	$0.0002(15)$
N2	$0.0125(14)$	$0.0211(16)$	$0.0195(18)$	$0.0017(12)$	$0.0016(13)$	$-0.0030(13)$
C1	$0.031(2)$	$0.026(2)$	$0.023(2)$	$0.0041(19)$	$0.0008(18)$	$-0.0024(18)$
C2	$0.0159(18)$	$0.026(2)$	$0.017(2)$	$0.0009(16)$	$-0.0038(16)$	$-0.0016(17)$
C3	$0.0164(18)$	$0.0160(17)$	$0.016(2)$	$0.0001(15)$	$0.0044(15)$	$-0.0005(15)$
C4	$0.0158(17)$	$0.0199(18)$	$0.019(2)$	$-0.0042(15)$	$0.0034(15)$	$-0.0015(16)$
C5	$0.0205(19)$	$0.028(2)$	$0.017(2)$	$0.0045(17)$	$-0.0002(16)$	$-0.0079(17)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Sn}-\mathrm{Br} 2^{\mathrm{i}}$	$2.5820(4)$
$\mathrm{Sn}-\mathrm{Br} 2$	$2.5820(4)$
$\mathrm{Sn}-\mathrm{Br} 3$	$2.6053(4)$
$\mathrm{Sn}-\mathrm{Br} 3^{\mathrm{i}}$	$2.6053(4)$
$\mathrm{Sn}-\mathrm{Br} 1^{\mathrm{i}}$	$2.6075(4)$
$\mathrm{Sn}-\mathrm{Br} 1$	$2.6075(4)$
$\mathrm{O} 1-\mathrm{C} 3$	$1.222(5)$
$\mathrm{O} 2-\mathrm{C} 3$	$1.339(5)$
$\mathrm{O} 2-\mathrm{C} 2$	$1.453(5)$
$\mathrm{N} 1-\mathrm{C} 3$	$1.341(5)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.445(5)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	0.8800
$\mathrm{~N} 2-\mathrm{C} 5$	$1.494(5)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	0.9100
$\mathrm{Br} 2^{\mathrm{i}}-\mathrm{Sn}-\mathrm{Br} 2$	$180.000(10$

$\mathrm{N} 2-\mathrm{H} 3 \mathrm{~N}$	0.9100
$\mathrm{~N} 2-\mathrm{H} 4 \mathrm{~N}$	0.9100
$\mathrm{C} 1-\mathrm{C} 2$	$1.493(6)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9800
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	0.9800
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9800
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9900
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9900
$\mathrm{C} 4-\mathrm{C} 5$	$1.509(6)$
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9900
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9900
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9900
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	0.9900
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5

sup-4

supplementary materials

$\mathrm{Br} 2{ }^{\text {i }}-\mathrm{Sn}-\mathrm{Br} 3$	89.437 (12)	H1A-C1-H1B	109.5
$\mathrm{Br} 2-\mathrm{Sn}-\mathrm{Br} 3$	90.563 (12)	C2- $21-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{Br} 2{ }^{\mathrm{i}}-\mathrm{Sn}-\mathrm{Br} 3^{\mathrm{i}}$	90.563 (12)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{Br} 2-\mathrm{Sn}-\mathrm{Br} 3^{\text {i }}$	89.437 (12)	H1B-C1- H 1 C	109.5
$\mathrm{Br} 3-\mathrm{Sn}-\mathrm{Br} 3^{\text {i }}$	180.0	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	106.4 (3)
$\mathrm{Br} 2^{\mathrm{i}}-\mathrm{Sn}-\mathrm{Br} 1^{\text {i }}$	89.357 (13)	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	110.4
$\mathrm{Br} 2-\mathrm{Sn}-\mathrm{Br} 1^{\text {i }}$	90.643 (13)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	110.4
$\mathrm{Br} 3-\mathrm{Sn}-\mathrm{Br}^{\text {i }}$	90.355 (12)	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	110.4
$\mathrm{Br} 3{ }^{\mathrm{i}}-\mathrm{Sn}-\mathrm{Br} 1^{\mathrm{i}}$	89.645 (12)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	110.4
$\mathrm{Br} 2^{\mathrm{i}}-\mathrm{Sn}-\mathrm{Br} 1$	90.643 (13)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.6
$\mathrm{Br} 2-\mathrm{Sn}-\mathrm{Br} 1$	89.357 (13)	$\mathrm{O} 1-\mathrm{C} 3-\mathrm{O} 2$	124.8 (3)
$\mathrm{Br} 3-\mathrm{Sn}-\mathrm{Br} 1$	89.646 (12)	$\mathrm{O} 1-\mathrm{C} 3-\mathrm{N} 1$	124.2 (4)
$\mathrm{Br} 3{ }^{\mathrm{i}}-\mathrm{Sn}-\mathrm{Br} 1$	90.354 (12)	$\mathrm{O} 2-\mathrm{C} 3-\mathrm{N} 1$	111.0 (3)
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Sn}-\mathrm{Br} 1$	180.000 (16)	N1-C4-C5	110.7 (3)
C3-O2-C2	116.5 (3)	N1-C4-H4A	109.5
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 4$	122.4 (3)	C5-C4-H4A	109.5
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	114.7	N1-C4-H4B	109.5
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	122.9	C5-C4-H4B	109.5
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	109.5	H4A-C4-H4B	108.1
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{H} 3 \mathrm{~N}$	109.5	N2-C5-C4	110.4 (3)
$\mathrm{H} 2 \mathrm{~N}-\mathrm{N} 2-\mathrm{H} 3 \mathrm{~N}$	109.5	N2-C5-H5A	109.6
C5-N2-H4N	109.5	C4-C5-H5A	109.6
$\mathrm{H} 2 \mathrm{~N}-\mathrm{N} 2-\mathrm{H} 4 \mathrm{~N}$	109.5	N2-C5-H5B	109.6
H3N-N2-H4N	109.5	C4-C5-H5B	109.6
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	H5A-C5-H5B	108.1
$\mathrm{C} 3-\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	176.8 (3)	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3-\mathrm{O} 2$	-178.8 (3)
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{C} 3-\mathrm{O} 1$	-0.8 (6)	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	96.4 (4)
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{C} 3-\mathrm{N} 1$	179.1 (3)	N1-C4-C5-N2	-173.7 (3)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3-\mathrm{O} 1$	1.1 (6)		

Symmetry codes: (i) $-x+1 / 2,-y+1 / 2,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{n} \cdots \mathrm{Br}^{\mathrm{i}}$	0.88	2.83	$3.501(3)$	134
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{n} \cdots \mathrm{Br}^{\mathrm{ii}}$	0.91	2.64	$3.495(3)$	157
$\mathrm{~N} 2 — \mathrm{H} 3 \mathrm{n} \cdots \mathrm{Br}^{\mathrm{iii}}$	0.91	2.84	$3.425(3)$	123
$\mathrm{~N} 2 — \mathrm{H} 4 \mathrm{n} \cdots 1^{\mathrm{iv}}$	0.91	1.88	$2.717(5)$	152

Symmetry codes: (i) $-x+1 / 2,-y+1 / 2,-z+1$; (ii) $-x+1 / 2, y+1 / 2,-z+3 / 2$; (iii) $x,-y, z+1 / 2$; (iv) $-x, y,-z+3 / 2$.

Fig. 1

Fig. 2

supplementary materials

Fig. 3

supplementary materials

Fig. 4

[^0]: \ddagger Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

[^1]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5214).

 ## References

 Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Duschinsky, R. (1950). Chem. Abstr. 44, 56460.
 Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
 Kita, K., Haruta, J-I., Tagawa, H. \& Tamura, Y. (1980). J. Org. Chem. 45, 45194522.

 Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
 Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
 Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
 Smith, G., Lynch, D. E. \& Bott, R. C. (1998). Aust. J. Chem. 51?, 159-164.
 Tavridou, P., Russo, U., Marton, D., Valle, G. \& Kovala-Demertzi, D. (1995). Inorg. Chim. Acta, 231, 139-145.
 Wilson, M. E. \& Nowick, J. S. (1998). Tetrahedron Lett. 39, 6613-6616.

